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9.3 Basic definitions and properties of representations

Let us now return to representations. As I mentioned earlier groups encode abstract symmetries
but representations describe concrete realisations of those symmetries. Informally, a represen-
tation of a group captures the action of a group on a vector space (e.g. on quantum states).
In particular, in a quantum context, it is a map from the elements of a group to a set of uni-
taries such that multiplication of that set of unitaries obeys the same properties as the original
group. For example, the group Z, can be represented as {1, X} and {1,SWAP} acting on C?
and (C?)®? respectively. We can formally define the notion of a representation of a group via,
the notion of homomorphisms introduced above.

Definition 9.3.1 (Group representation). A representation R of a group G on a vector space
V is a group [homomorphism| E| from G to a set of matrices that act on a vector space V.
The dimension of a representation R is defined to be the dimension of the vector state V, i.e.,
dim(R) = dim(V).

We can think of this pictorially as:
91:-92=01" 92
VLol
D(g1) - D(g2) = D(g1 - g2)

where D(g) is a d x d dimensional matrix that acts on a d dimensional vector space V.

We stress that formally a representation is by definition the map R. However, more informally
the word representation is used in multiple ways. For example, informally you might hear some-
one discuss the {1, SWAP} representation of Zy. Technically {1,SWAP} is a group (that is
isomorphic to Zsy) and the representation is the map R such that R(e) = I and R(a) = SWAP
(where the properties of a and e are captured by the Zg Cayley table). As long as you remem-
ber that fundamentally it is the underlying map that is the representation, this casual way of
speaking shouldn’t cause too much confusion in practis

Let us give a few examples:

Trivial representation. All groups admit a trivial representation (or the Identity represen-
tation): Vge G,R(g) = 1.
Examples representations for the parity group 7, = {e, a}.

o As we said before we have the representations G = {1, X } and Ggwap = {1, SWAP} acting
on C? and (C?)®? respectively. You could also haveﬂ G={1,Z} on C°.

e On R it has two representations: 1) the trivial representation R(g) =1 for g = e, a, as well
as 2) the representation R(e) =1, R(a) = -1.

5in most cases we will look at it will also be an isomorphism, i.e., a one-to-one map

5This subtlety is put nicely in [Representation Theory for Geometric Quantum Machine Learning: As an
unfortunate feature of the subject, the word “representation” can equivalently refer to the group homomorphism
R, the vector space upon which it acts V', or the image subgroup R(G) c GL(V'). Once one gets used to this, it
is not as bad as it sounds: in practice, one often thinks of a representation as being the shared data of the vector
space V' and the linear action of G on that vector space.

"This is in fact equivalent to the G = {1, X} as they are related by a unitary transformation. More on equivalent
transformations in a bit.
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o The trivial representation {I} can also of course be defined on a vector space of any
dimension.

Examples representations for O(3). Consider O(3) the group of orthogonal matrices in
dimension d = 3. We recall that this is the set of all 3 x 3 matrices M such that MM” = 1.

e The simplest representation, called the fundamental representation, is simply the set of all
3 x 3 orthogonal matrices.

o The morphism R(g) = det(M) = £1 is a representation of O(3) on the vector space R
(indeed det(AB) = det(A) det(B)).

Fundamental representation of continuous groups. All continuous groups have the a
‘fundamental’ representation where the matrices in the group and the matrices in the represen-
tation coincide (“up to change of basis”)lﬂ

Adjoint representation. Another important representation that is possible for any group
is the adjoint representation. Thus far we have considered representations that map vectors
to vectors, it is also possible to consider representations that map matrices to matrices. Let
V' = M3(C) denote the set of 2 x 2 complex matrices. The linear super-operator

A U, AUJ (9.16)

where U, = R(g) is a possible representation of G. For example, U..UT for U e SU(2) is a
representation of SU(2).

So far we have spotted the representations corresponding to a symmetry group just by ‘seeing
them’ In fact, as I discussed earlier, the process often in physics goes the other way around.
We know the symmetry at the level of the representation and then abstractify to identify the
underlying group. But what about going the other way around - what if we have a group, and
don’t know any of its (non-trivial) representations, and want to find one?

Regular representation of finite groups. All finite groups admit what is known as the
‘regular’ representation as one of its representations.

Definition 9.3.2 (Regular representation). For a finite group of order h, one can construct the
so-called regular representation using h x h matrices as follows. First start from the following
reordered Cayley table (here for h = 3):

* ‘ e at bt
ele a1t bt

¢= ala e ab™! (6.17)
b|b bal e

Now the representation can be done using the following matrices for g € G: We use a matrix
which is zero everywhere except for the position that corresponds to the group element in the
Cayley table:
(R(9))ij = b9, (9.18)
8Note that although the matrices between the group G and its representatives {R, : g € G} ¢ GL(V) are
identical, we think of the abstract group and its representatives as conceptually distinct.
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With this definition, e is represented by the identity matrix R(e) = I. It is easy to check that
these matrices indeed follow the group algebra. You’ll work through some examples of this in
the problem sheet.

It is also possible to construct representations from a simpler (set of) already known represen-
tations.

Equivalent representations. Consider a group G and a representation R(g)Vg € G. We
define now R'(g) = SR(g)S~! where S can be any invertible matrix (in practise, in most cases
we come accross, it will be a unitary matrix). This is a similarity transformatiorﬂ It is
easy to see that similarity transformations of representations are still representations. It is
straightforward to verify that R’(g) is a representation of G (i.e., if R(gh) = R(g)R(h) then
R'(gh) = SR(9)R(h)S™" = SR(9)S™' SR(h)S™" = R'(9)R' ().

Definition 9.3.3 (Equivalent representation). Two representations D and D’ are equivalent if
they are related by a similarity transformation R'(g) = SR(g)S™!.

Roughly speaking, representations are equivalent if we can transform one to the other by a
linear invertible transformation. If what follows, we shall be mainly concerned by unitary
representations and transformations. In this case SST = 1 and ST = S~'. This means that we
shall consider two representations as equivalent if they simply correspond to a change of basis:

R'(9) =UR(g)U".

Tensor product representation. For example, consider two representations R; and Rps
for a group G, it is straightforward to verify (check this!) that the tensor product of their
representations R; ® Ro, i.e. the set of matrices such that

Ri(g) ® Ra(g) (9.19)

for each element g, is also a representation. For example, {I ® I,Z ® Z} is a representation of
Zy (in fact, {I®F, Z®*) is a representation for any k).

Tensor product representations are fundamental in physics whenever we take the symmetry
property of a single system and want to study the properties of a composite system. For ex-
ample, suppose we have a system of n particles each of which are SU(2) symmetric. In this
case, we will be interested in the representation of SU(2) on (C?)®", and so a natural choice is
SU(2)®™.

Direct sum representation. Another useful composite representation, one that plays a key
role in physics, is the direct sum representation.

Definition 9.3.4. Consider two representations Ri, Rs of a group G acting on vector space
V1, V5. The direct sum R; & R is a representation of G acting on Vi @ V5, defined by

(R1® R2)(g)(v1,v2) := (R1(g9)v1, Ra(g)ve), forall geG. (9.20)
Or, writing the matrices out explicitly, R; @ Ry acting on V; & Vo we have:
_[’(g) O
(R1® R2)(g) = ( 0 Ro(g))" for all g € G. (9.21)

°In linear algebra, two n x n matrices A and B are called similar if there exists an invertible n-by-n matrix P
such that B = P™'AP.
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That this is indeed a representation follows straightforwardly from the block structure of Eq. .
(If this isn’t immediately clear to you, do work through it explicitly). We can also take the direct
sum of the same representation, i.e., Ry @ Rj, in which case we say that R; has multiplicity of
two, and we write

ua@Rnwr{R“” 0

0 Rl(g)) =I®Ri(g), forallgedG. (9.22)

Notice that due to the block structure of a direct sum representation the action of an element
of the representation structure of a group leave certain subspaces invariant. This will turn out
to be very important.

Hopefully it is now clear how you can take simple representations of a group and create more
complex ones. In many cases, we will in fact be more interested in going in the other direction.
Taking a complex representation and trying to break it down into a simpler one. More concretely,
one of the things representation theory is most useful for is taking a representation (e.g. say a
tensor one), and expressing it as a direct sum of representations on smaller subspaces. We will
discuss this in Section [9.4]

9.4 (Ir)Reducible Representations of Groups

Our goal here will be discuss when/how it is possible to decompose a representation into a direct
sum of other representations and, hopefully, give a sense of why we might be interested in doing
this in the first place.

9.4.1 Warm up example

Consider a two qubit system and the tensor product representation of SU(2) on this space, i.e.
R(g)=Uz;0U,. (9.23)

Can we decompose this into the direct sum of two other representations? That is, can we block
diagonalize U, ® Uy, i.e., write it in the form

m@e - (" 0] (0.21)

where M and B for all g

To answer this we first note that U,®U, commutes with the SWAP operator [U,0U,, SWAP] = 0.
This means that it is possible to (blockIT_UD diagonalize U, ® U, in the same basis as the SWAP.
More generally, the following proposition holds.

Proposition 9.4.1. Let R(g) = Uy be a representation of a group G, and let H be a Hermitian
operator such that [Ug, H] = 0 for all g € G. Then, for any eigenvector |1)) of H with eigenvalue A,
Ugl) is also an eigenvector of H of eigenvalue \. That is, H is simultaneously block diagonalized

with Uy.

0The fact we have ‘block diagonalized’ rather than simply ‘diagonalized’ here allows for the fact that H and
Uy can have degenerate eigenvalues

109



Quantum Physics 11 CHAPTER 9. SYMMETRY IN QUANTUM MECHANICS

Demo. Observe that HUglp) = UgHp) = AUgyltp). This means that H and U, are (block)
diagonal in the same basis O

Next we recall that the SWAP operator has eigenvalue 1 on the symmetric subspace spanned by
the degenerate eigenstates {|11),]01) +|10),|00)} and eigenvalue —1 on the anti-symmetric sub-
space spanned by {|10) —[01)}. That is, it is block diagonalized in the symmetric-antisymmetric
decomposition.

It thus follows that the tensor representation U, ®Uy, is also block diagonalized by the symmetric-
antisymmetric decomposition of V: i.e., in the basis {|11), %(\01) +1(10)), 00), %(HO) —-|01)}).
That is, every representative U, ® U, can be expressed as

0

0

0
0 00

UseU, = (9.25)

where O indicates the blocks to be filled in with the appropriate matrix elements. That is, the
claim is that if you take any matrix constructed from the tensor product of two single qubit
matrices and write it in the Bell basis E it will have the block diagonal form shown above EL

Note that this decomposition, Eq. (9.25]), also implies the existence of invariant subspaces under
the action of Uy ® Uy. Concretely, we get straight away that the state |®7) = %(|01) —[10)) is left

unchanged by any U,®U, where U, € SU(2). This is pretty cool, right? And would not have been
obvious without group theory. Similarly, any state that lives in the span {|11),]|01) +(10),]00)}
will remain in that subspace.

More formally, using the notation Sym?(C?) for the symmetric subspace and Alt?(C2) for the
antisymmetric subspace, we can write the composite vector space as V = Sym?(C?) @ Alt?(C?)
and it is possible to construct representations that act on these spaces separately. Concretely, it
can be built from the direct sum of SU(1) (i.e. just the 1 by 1 identity matrix) on the subspace
Alt2(C?) and SU(3) on the Sym?(C?) subspace. Note also, that due to the block structure of
Uy ® Uy a state in the subspace Sym?(C?) remains in the subspace spanned by Sym?(C?) (and
similarly for Alt>(C?) ). Again, if this feels a bit abstract - check it numerically!

It is important to stress that it is not always possible to reduce a representation into a direct
sum of representations. Or, equivalently, a representation will not always have an invariant
subspace. For a simple example of such an irreducible representation consider the fundamen-
tal representation of SU(2). This is simply the continuous set of all single qubit unitaries.
Clearly there is no single basis in which such matrices are all diagonal. Or, equivalently, there
is no way to split the vector space into disjoint subspaces where any vector in that space re-
mains in that space under any arbitrary single qubit unitary. Similarly, the representation

"Note the similarity with our discussion in Eq. (19.3)- the calculation was exactly the same but there we used
it to argue that symmetries indicated degeneracies. We will come back to this perspective again in a bit when
we see that the dimension of irreducible representations indicates the number of degenerate eigenstates. This
probably won’t make much sense now if you're reading these notes through for the first time, but hopefully this
is helpful if reading back through.

12The subspace spanned by {|11),|01) +|10),]00)} is alternatively spanned by the Bell states {|®*),|®7),[¥*)}.

13 Brercise: If you’re not yet fully convinced, check this numerically. It’s quite cool to see it work in practise.
I’ve uploaded a mathematica file to the moodle where I run through it. You can get a free mathematica licence
from EPFL. That said, you could also quickly check this in python / whatever your favourite language is.
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SU(2) on Sym?(C?) and Alt?(C?) cannot be further reduced ( e.g. there is no subspace within
{|11),|01)+|10),]00},|10)—|01)} that remains invariant under any unitary U®U with U € SU(2)).

Before we move on to discussing when representations are and are not reducible let me just
highlight that there is lots of physics in the simple example of decomposing SU(2) ® SU(2) into
a direct sum. And this physics hopefully gives you a sense of why reducing representations is
physically interesting.

Link with identical particles. Firstly, thinking back to when we studied identical particles,
you should recognise the symmetric and anti-symmetric subspaces found above as corresponding
to Bosons and Fermions respectively. Thus these observations could be seen as another way of
showingf'z] that there are two types of fundamental particles that we cannot transform between.

Link with addition of angular momentum/Clebsch-Gordan coefficients. The two
blocks found above also correspond to the spin 1 and spin 0 blocks obtained when adding the
momentum of two spin half particles. That is, we have three spin 1 states:

s=1,m=1)=|11) (9.26)

|s:1,m:0):%(|10)+|01>) 9.27)

5= 1,m = ~1) = |00) (9.28)
and one spin 0 state:

s = 0,m = 0) = ——([10) = 01)). (9.29)

V2

Here the left hand side of the equations denotes the state corresponding to the total spin s = s1+s9
of two spin 1/2 particles (s1 = 1/2, so = 1/2) and total spin m orientated in the z direction. On
the right hand side of the equations we denote the spin orientation of the two particles, e.g.
|10) corresponds to one spin aligned spin up with z and the other spin pointing down in the z
direction. These equations, read right to left, can be viewed as representing a change in basis
from a basis where we list the individual orientations of the spins to the resulting total spin
and orientation of the combined spins. Thus we see that the decomposition of a tensor product
representation into a direct sum of representation has a deep link with how to add the angular
momentum of composite systems. We’ll come back to this in a lot more detail in a couple of
weeks times.

9.4.2 Definitions of (Ir)Reducibility.

Hopefully that example gave you some hint of what we mean by reducing representation into
a direct sum of representations. Hopefully it also gave you a hint as to why it is physically
interesting. I appreciate right now it might seem like an overkill and all we have done is rephrase
ideas from quantum physics 1 in a group theoretic language. However, in more complex scenarios
we will start only with the symmetry properties and be faced with the challenge of trying to
identify the relevant subspaces. This is when group and representation theory really becomes
useful.

Y Technically we just consider the rather trivial U ® U evolutions here but the more general set of evolutions
that commute with SWAP could similarly be diagonalized in the symmetric and anti-symmetric subspaces.
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Let’s define the concepts of reducible and irreducible representations a little more formally.

Definition 9.4.2 (Reducible representation). A representation R(g) of a group G over a vector
space V is reducible if there exists an invariant subspace. That is, if there exists a non-trivial
(i.e. not just V or 0) subspace W of V such that V|w) € W, we have R(g)|w) ¢ W, for any
element g € G.

In plain words: an invariant subspace means a smaller space than the actual space V', where the
application of any matrix in the representation does not leave the space. In terms of matrices,
this means that there is an equivalent representation that can be written as a block matrix with

a zero block:
-3 )

In fact if we write all vectors in V as |z) = (Z}), we see that the subspace defined by vectors

|w) = (g) is transformed as

R(g)|w) = (P(g)w) (9.31)

so that such vectors never leave the subspace. If a representation is reducible, then there is a
basis such that all matrices can be written as such block matrices in the basis.

Definition 9.4.3 (Irreducible representation). An irreducible representation is a representation
that is not reducible.

Obviously, representations that live in dimension 1 are irreducible. One of the main uses of
group theory in quantum mechanics is to reduce representations into a set of irreducible ones.

A particular case of reducibility is complete reducibility, in which case T'(g) = 0 as well.

Definition 9.4.4 (Completely Reducible representation). A representation R(g) of a group G
is completely reducible if it splits into a direct sum of irreducible representations

Ri(g) 0 .. 0
R =| 0 DV @Rri). (93
0 0 .. Ri(9)

We may wonder if all reducible transformations are completely reducible. Sadly, this is not the
case. Here is an example: the matrices

M(z) = ((1) f) (9.33)

are a representation of the group R, +. Indeed, M(z)M(y) = M(x +y). However, we cannot
diagonalize such matrices.

The good news, however, is that in this lecture we will limit ourselves to unitary representations
which if they are reducible are always completely reducibleEl

5To see this note that since unitary transformation send orthogonal states to orthogonal states T'(g) must be

zero in equation ({9.30]).
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Much of the rest of this chapter will be centred around developing the tools to find and use irre-
ducible representations. More precisely, we are going to do two things: i) Study the consequences
of having an irreducible representation, and ii) See how to get an irreducible representation. Ir-
reducible representations are often called ‘irreps’ for short.

A word of warning, the next few sections will get pretty technical. This is unavoidable. If
you are ever lost, try and construct yourself some examples of the statements being made.
To avoid getting too bogged down in technicalities many of the longer proofs will be left to
appendices/references. These proofs are non-examinable - but you may find working through
them helpful for your understanding.

9.5 Schur’s Lemmas

A key result to help identify irreps is Schur’s lemma. This discusses the link between irreducible
representations, and in particular their link with an operator that commutes with all elements
of the representation.

Schur’s first lemma gives us a criterion to determine when two representations are reducible.

Lemme 9.5.1 (Schur’s First LemmaIEI). Let R1(g) and R2(g) be two non-equivalent irreducible
representations of a group G, each acting on vector spaces Vi and Va. If there is a matrix A is
such that

ARi(g) = R2(g)A VgeG (9.34)

then A =0.
Or, turning it around, if you can find an A that satisfies Eq. (9.34) such that A # 0 then you

representations R; and Ry are reducible. This therefore gives you one way of detecting that a
representation is reducible.

The second lemma studies what kind of matrices commute with all matrices of a given irreducible
representation.

Lemme 9.5.2 (Schur’s Second Lemma@. Let R be an irreducible unitary representationlﬂ of
a group G. If
AR(g) = R(g)A VgeG,

then A=\l for some X\ € C.

I quite like the explanation of Schur’s second lemma in |Group Theory In A Nutshell For Physi-
cists so I'll quote from it directly: If I give you a bunch of matrices Ry, Ra,---, Ry, the identity
matriz I commutes with all these matrices, of course. But it is also quite possible for you to
find a matriz A, not the identity, that commutes with all n matrices. The theorem says that you
can’t do this if the given matrices Dy, Ds,---, Dy, are not any old bunch of matrices you found

1The proof here|isn’t too bad.

"For a nice proof of this check out |Group theory in a nutshell for physicists.

!8For those of you for which these details are important (and/or those who have been confused how Schur’s
lemma is stated differently in different books/references) the statement and proof of Schur’s Second Lemma can
differ slightly depending on whether you are looking at finite or infinite dimensional representations. However, we
will not worry about these subtleties in this course. It holds in the form stated here for finite or compact unitary
representations (i.e. all representations we will be interested in for this course).
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hanging around the street corner, but the much-honored representation matrices furnishing an
irreducible representation of a group.

In short, if there exists an operator A that commutes with all elements of two irreducible rep-
resentations then Schur lemmas gives a very strong limit to what A can be: either a trivial
diagonal matrix, if the representations are equivalent (i.e., the same up to a change of basis), or
a zero one, if they are not. Or, turning it around, no operator - except the trivial zero operator
- commutes with all elements of two non-equivalent irreducible representations. So if you find a
non-trivial operator that does commute then the representations are reducible.

Example. To make this less abstract let’s first consider our favourite example of SU(2) ®
SU(2). We know that its irreps are SU(1) on the anti-symmetric subspace Alt?(C?) and
SU(3) on the symmetric subspace Sym?(C?). Tt follows from Schur’s Second Lemma that the
only operators that commute with SUs(g) for all g is a scalar multiplication of I on this sub-
space, i.e. T =[UFNU*|+|DP7)(D7|+|PF)(P*|. And this is, of course, indeed the case.

As another example of how to apply Schur’s lemma let us consider the R(e) = I and R(a) = X
representation of Zo group. The A = X # I operator commutes with both I and X and so we
know immediately that R(e) = I and R(a) = X is not an irrep. Note, that this is a consequence
of the Z5 group being Abelian. More generally, from Schur’s lemma, we can deduce something
very important:

Theorem 9.5.3 (Representation of Abelian groups). All irreducible representations of Abelian
groups are scalar.

Demo. Let R(g) be an irreducible representation of an Abelian group G. Then we have, Vg, h €
G, R(g)R(h) = R(g*h) = R(h+g) = R(h)R(g). Since R(h) commutes with all R(g), then from
the second Schur lemma, it must be a matrix I\, and R(h) = IA(h) for all h. Since it is also
irreducible, then R(h) = A(h) (i.e. = I\ clearly has invariant subspaces for dim(/) > 2). O

More generally, given a bunch of matrices, there are potentially many matrices that commute
with all of them. However, if the matrices form an irreducible representation of a finite group
only multiples of the identity matrix commute with them. In general, we will be interested in
problems where the Hamiltonian commutes with a given symmetry of a system (and so are block
diagonal in the same basis). This means that if we can identify the systems irreps we can block
diagonalize the Hamiltonian. Let’s go through this argument more carefully.

9.6 Irreps are all about Block Diagonalization!

In a quantum context one often considers the Hamiltonian H, and G a symmetry group that
commutes with H. More precisely, suppose we have a representation of a symmetry group over
a Hilbert space H with [R(g), H] =0V g€ G. For example, H could be an infinite dimensional
space, that forms a basis (for instance the Fourier basis). In an infinite dimensional space, we
expect that R(g) is reducible. So, if we work hard, we can find a basis of the Hilbert space
that reduces the representation, that is we can recompose the space as H = H1 ® Ha & ...
where all the H; are invariant over the group transformation. At this point, we thus have
Vg € G,R(g) = Ri1(g9) ® R2(g) ® R3(g) ... where each of the R; are irreps, or equivalently in
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- -
Corporate needs you to find the differences
between this picture and this picture.

They're the same picture.

Figure 9.4:
matrix form:
Ri(9) 0 0
0 Ra(g) 0
R(q) = 9.35
(9) 0 0 Rs(9) ( )
In this basis, we write the Hamiltonian (which is of course Hermitian) as
Hyy Hip Hiz ... Hyy Hip Hig
- Hyy Hiy Hpz ...| | Hiy Hz H (9.36)

Hsy Hso Hsz ... - Hf3 H§3 Hsj

Now, let us see what Schur’s lemma tells us. If [R(g),H] =0V g € G then we can apply the
Schur lemma between all blocks in this decomposition. Writing out the matrices explicitly, and
using R(g)H = HR(g), we see that on the diagonal we have

Hyp Ry, = Ry Hyy, (9.37)

for all k£ and so by Schur’s second lemma along the diagonal we have A\pI. Then on the off-
diagonal we have terms of the form

Hj.Ry = RjHjy,. (9.38)

If Ry and R; are non-equivalent then, from Schur’s first lemma, the block Hj; = 0. If R; and
R; are equivalent then the block Hj; can be non-zero. That is, assuming only R; and R are
equivalent, the Hamiltonian can be written as

MI Hip 00
H21 )\2[ 0

H=l 0 0 XI 0 .. (9.39)
0 0 0 0
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This allows us to considerably simplify the Hamiltonian just from the role of symmetry. In fact,
if all the representations are non-equivalent then all the off diagonal terms will have vanished
and we have block diagonalized the Hamiltonian - i.e. we know the degenerate eigenspaces of
the Hamiltonian! This then makes finding the eigenvalues/eigenvectors of a Hamiltonian much
easier as we can just find the eigenvalues/vectors of the individual blocks (which are smaller and
so easier to handle!) rather than work with the large composite Hamiltonian.

Note, that if all the representations are non-equivalent then we can immediately read off the
degeneracy of each of each of the eigenvalues- it’s just given by the dimension of the irreps!
Thus, as promised at the end of the warm up at the start of the group theory lectures, e.g.
after Eq. , group and rep theory allows us to not only better understand but also explicitly
compute the number of degenerate eigenvalues a Hamiltonian has.

Or, turning it around, given experimental information on the degeneracy, we can use this infor-
mation to try and identify the relevant symmetry group. In particular, G has to have at least
one d-dimensional irreducible representation.

In summary, in quantum mechanics:

G = degeneracy and G <= degeneracy
d = degrees of degeneracy = dimension of irreducible representation

Example 1: Indistinguishable particles. Lets suppose we are interested in studying a
Hamiltonian H of two indistinguishable particles. The relevant symmetry group in this case is
the permutation group for two objects, Sy = {e,p} with the cayley table:

e p
ele p.
p|p ¢
Let’s say our two particles are two qubits (because qubits are nice and simple). Then a represen-
tation of this group is R(e) = I, R(p) = SWAP15 where SWAP15|00) = |00), SWAP5|01) = [10),
SWAP5[10) = |01), and SWAP;2|11) = [11), or in matrix form

1000
0 010

SWAP2={0 | o o (9.40)
0 0 0 1

We know immediately that this representation has to be reducible because Ss is an Abelian group
and the irreps of an Abelian group are 1D. The irreps of Sy are clearly the trivial irrep Ry(e) =
1,Ri(p) = 1 and Ry(e) = 1,Ra2(p) = -1. So how do we write the R(e) = I, R(p) = SWAP;9
representation in terms of these? We we've already seen this today! The SWAP operator is
diagonal in the Bell basis with eigenvalues +1 and -1. That is, in the Bell basis we can write

100 0
010 0
SWAP=|0 o | o (9.41)
000 -1
Thus we have:
100 0\ (Ri(e) 0 0 0
Jo1 ool | 0 R o0 0
Be)=19 0 1 of7| o 0 Ri(e) 0 (9-42)
0001 0 0 0 Rae)
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and
100 0 Ri(p) 0O 0 0
Jo1o0o o]l | o m®p» o 0
Be)=1y 0 1 o7 o 0 Ri(p) O (9.43)
000 -1 0 0 0 Ras(p)

Or, more compactly, R(g) = Ri1(g) ® R1(g9) ® R1(g) ® R2(g). We have successfully broken down
our representation down into irreps!

Ok, so now we’ve figured out the irreps of the relevant symmetry group and representation for
our particular system, what can we say about the Hamiltonian of the system. Well we know
that H commutes with all representations of the symmetry group - this is by assumption - this is
what it means for a physical system to have a given symmetry. Thus we have [ H,SWAP15] = 0.
If we now apply Schur’s lemma we know that the Hamiltonian must be block diagonalisable in
the Bell basis. That is, it has to be of the form:

o

H (9.44)
000

where O indicates the blocks to be filled in with the appropriate matrix elements.

As often with these examples, the application of group theory here right now might feel like
overkill. Of course we always knew that if H commuted with SWAP it had to be block-
diagonalizable in the same basis. But isn’t it nice to see that these rather abstract looking
theorems (Schur’s lemma’s) lead to the same conclusions. Or, at least, I would rather you be
bored reading this thinking it all makes sense and is trivial than be completely lost. I warn you,
the next example is also pretty trivial. However, example 3 on Bloch’s theorem (which will be
covered in more detail in the problem sheet) is where things start to get more interesting.

Example 2: Parity. A parity transformation (also called parity inversion) is the flip in the
sign of a spatial coordinate. In three dimensions, it refers to the simultaneous flip in the sign of

x -z
all three spatial coordinates (a point reflection): P: |y |+~ | -y |. A wave function can always
z -z

be decomposed into an even and an odd component 1 (x) = ¢*(x) + 1~ (x), and the application
of the parity operator transforms it as

Py () = Py (2) + Py (2) = 0" (~a) + ¥~ (-2) = " (@) - ¥ () (0.45)

Note in particular that PP = 1. The set of all parity transformations that can be obtained by
the parity operator is thus limited to 2. The set of of these transformations forms the parity
group Zs = {e,p} which is the same as the permutation group on two objects (i.e, the same group
we were just looking at). So we recall again that this group has only two possible irreducible
representations in dimension 1 on R: (i) Ri(e) =1 and R(p) =1 and (ii) Ra(e) =1, Ra(p) = -1.

Consider now a problem with a Hamiltonian that commutes with any parity transformation.
This will be the case for any particle with a potential such that V(z) = V(-z). The Hamiltonian
lives in a large (possibly infinite) Hilbert space H. Now, we consider a basis of H made of even
and odd functions (such as the Fourier basis): {¢7(z), ¢35 (x),...,¢7(z),p5(x),...}.

This basis defines invariant subspaces with respect to parity, i.e. for any possible representation
R of the parity group, an even (odd) basis function stays even (odd) under any application of
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R(e) or R(p). We can write R(e) and R(p) in this basis as

1000 e
0 1 00

R(e)=] 0 0 1 0 and R(p) =| " 1 0 o0
0 00 1 0o o

where in R(p) the rows/columns with +1 correspond to even basis states and the rows/columns
with -1 correspond to the odd basis states. That is, we have

Ri(g) 0 0 0
0 Ri(g) O 0
R(g)=| 0 Rag) 0 (9.46)
0 0 0 Ra(g)

Applying the Schur lemmas, and noting that R;(g) and Rs(g) are non-equivalent irreps, we now

obtain that
(Hu O
H = ( 0 H22) . (9.47)

It follows that the eigenfunctions of a Hamiltonian that commutes with the parity operator are
either odd or even. That is, they have well defined parity. You of course already knew this -
but hopefully it is nice to see that this can arise from your new found understanding of irreps.

Example 3: Bloch’s Theorem. Let’s now consider the case of a particle moving in 1D in a
periodic potential V' (x). That is under the Hamiltonian

H—p—2+V() h V( )=V (x) (9.48)
= o x) where x+a)=V(zx). .

We will suppose that the particle moves on a 1-dimensional lattice consisting of N sites and
periodic boundary conditions.

What is the symmetry in group in this case? Well the Hamiltonian is left unchanged by any
translation U, by a distance a, i.e., x - Ux = z +a. It follows, that the symmetry group consists
of {I,U,,U2,---,UN"11. Note that given the periodic boundary conditions we have that U = I.
Thus the symmetry group is just the familiar cyclic group Zy. In the problem sheet, you’ll then
use your understanding of the irreps of Zy to determine the form of the eigenfunctions of H.

9.7 How many irreducible representations does a group have?

Let us start by presenting two theorems that can be used to deduce the number of irreps that
a group has.

Lemme 9.7.1. Burnside lemma: For a finite group of order h, there are only a finite number

n of irreducible representations a =1,...,n of dimension l,, and
n
SNiZ=h (9.49)
a=1
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For example, the group Z, is order 2 (i.e. contains two elements). It’s irreducible representations
are the trivial representation, e - 1 and a — 1, and the sign representation, e - 1 and a —
—1. And this satisfies the Burnside lemma as 12 + 12 = 2. (For a proof of this Theorem see

Appendix [9.14)).

Lemme 9.7.2. Number of Irreducible Representations: For a finite group of order h, the number
of (non-equivalent) irreps is equal to the number of conjugacy classes:

N, =N,. (9.50)

To understand this second theorem, which we will prove in Section we will need to introduce
the concept of a conjugacy class.

9.7.1 Equivalence relations and conjugacy classes.

I thought equivalence/conjugacy classes were really nicely explained in ‘group theory in a nut
shell for physicists’ so I'm going to quote directly from there here:

“Given a group G, distinct group elements are of course not the same, but there is a sense that
some group elements might be essentially the same. The notion of equivalence class makes this
hunch precise.

Before giving a formal definition, let me provide some intuitive feel for what “essentially the
same” might mean. Consider SO(3). We feel that a rotation through 17° and a rotation
through 71° are in no way essentially the same, but that, in contrast, a rotation through 17°
around the z-axis and a rotation through 17° around the z-axis are essentially the same. We
could simply call the x-axis the z-axis.

As another example, consider S3. We feel that the elements (123) and (132) are equivalent,
since they offer essentially the same deal; again, we simply interchange the names of object 2
and object 3. We could translate the words into equations as follows:

(23)71(123)(23) = (32)(12)(23)(32) = (32)(21) = (321) = (132),

A transformation using (23) has turned (123) and (132) into each other, as expected. Similarly,
you would think that (12), (23), and (31) are essentially the same, but that they are in no way
essentially the same as (123).

In a group G, two elements g and g’ are said to be equivalent (g ~ ¢') if there exists another
element f such that

-1
g =f"9f
The transformation g - ¢ is like a similarity transformation in linear algebra.”

Thus the equivalence relation divides the elements of group G into distinct classes which are
called conjugate classes or simply classes.

Let us consider for example the order 4 cyclic group:

* ‘ e a b c
ele a b c
G=ala e ¢ b (9.51)
b|b ¢ e a
clc b a e
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Figure 9.5: Graph of an example equivalence with 7 classes (from Wiki page on equivalence
classes).) Each edge represents ~ (with edges from any node to itself not shown).

In this case, can check that we have four conjugacy classes, each containing one member. (But,

for example, {a,b} is not an equivalence class because there is no u € {a, b} such that uau™ = b.)

In fact, this is true for each Abelian group (and the converse is true). An Abelian group of order
n has n conjugacy classes. This is a trivial consequence of commutation (i.e. uau™ = uuta =

a = b)! Looking back at Lemma this then implies that an order n Abelian group has n
irreps (irreducible representations).

A more interesting example is given by the Here we have three conjugacy classes:
{e},{cs,c_}, and the three mirrors {o,0 ,0 } (if you can’t see why check out this video). Note
that e is always a "isolated" class in itself. Indeed, if z = v teu then x = e. Looking back at
Lemma, this tells us that C3v has 3 irreps.

So we now have a way of counting how many irreps we have. This can be useful because if we
are trying to find all irreducible representations of a group because it gives us a way of knowing
how many we are missing. Then Burnside’s Lemma gives us a way of guessing the dimensions of
the missing representations. But this is only so useful. Really we want to know how to identify
some of the irreps.
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